(本小题满分14分)东华旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在人或人以下,飞机票每张收费元;若旅游团的人数多于人,则给予优惠,每多人,机票费每张减少元,但旅游团的人数最多有人,设旅游团的人数为人,每张飞机票价为元,旅行社可获得的利润为元.(1)写出与的函数关系式;(2)写出与的函数关系式;(3)那么旅游团的人数为多少时,旅行社可获得的利润最大?
已知函数,且函数是上的增函数。 (1)求的取值范围; (2)若对任意的,都有(e是自然对数的底),求满足条件的最大整数的值。
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求的标准方程; (Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由。
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表: 甲系列:
乙系列:
现该运动员最后一个出场,其之前运动员的最高得分为118分。 (I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率; (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX
一个四棱锥的三视图如图所示,E为侧棱PC上一动点。 (1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等). (2)点在何处时,面EBD,并求出此时二面角平面角的余弦值
已知等差数列满足:,,的前n项和为. (Ⅰ)求及; (Ⅱ)令bn=(),求数列的前n项和。