已知函数且,(1)求的值;(2)判断在上的单调性,并用定义证明.(3)求在[ 2 , 5 ]上的值域
图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、与桥面垂直,通过测量得知,,当为中点时,. (1)求的长; (2)试问在线段的何处时,达到最大.
图1
如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点. (1)若,求证:平面; (2)若,求证:平面⊥平面.
在中,角,,的对边分别为,,,若. (1)求证:; (2)当,时,求的面积.
已知实数,且,若恒成立. (1)求实数m的最小值; (2)若对任意的恒成立,求实数x的取值范围.
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C. (1)以直线AB的倾斜角为参数,求曲线C的参数方程; (2)求点P到点D距离的最大值.