(本小题满分14分)已知函数,且.(1)求a的值;(2)判断的奇偶性,并加以证明;(3)判断函数在[2,+)上的单调性,并加以证明.
如图△为直角三角形,,以为直径的圆交于点,点是边的中点,连交圆于点.(Ⅰ)求证:、、、四点共圆;(Ⅱ)设,,求的长.
已知函数 且.(Ⅰ)当时,求在点处的切线方程; (Ⅱ)若函数在区间上为单调函数,求的取值范围.
设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
(Ⅰ)求曲线、的标准方程;(Ⅱ)设直线过抛物线的焦点,与椭圆交于不同的两点、,当时,求直线的方程.
下表是我国2010年和2011年2~6月CPI同比(即当年某月与前一年同月相比)的增长数据,其中2011年的5个CPI数据成等差数列.(Ⅰ)求、、的值;(Ⅱ)求2011年2~6月我国CPI数据的方差;(Ⅲ)一般认为,某月CPI数据达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点为严重通货膨胀,现随机从2010年5个月和2011年5个月的数据中各抽取一个数据,求相同月份2010年通货膨胀,并且2011年严重通货膨胀的概率.我国2010年和2011年2~6月份的CPI数据(单位:百分点,1个百分点 )
如图,在四棱锥中,平面平面,,,,是中点,是中点. (Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.