己知圆和直线,在轴上有一点,在圆上有不与重合的两动点,设直线斜率为,直线斜率为,直线斜率为,(l)若①求出点坐标;②交于,交于,求证:以为直径的圆,总过定点,并求出定点坐标.(2)若:判断直线是否经过定点,若有,求出来,若没有,请说明理由.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当弦AB被点P平分时,写出直线l的方程; (2)当直线l的倾斜角为45º时,求弦AB的长.
如图,在四棱锥中,底面是矩形,已知, (1)证明平面; (2)求异面直线与所成的角的正切值; (3)求四棱锥的体积。
已知直线经过两点A(2,1),B(6,3) (1)求直线的方程 (2)圆C的圆心在直线上,并且与轴相切于点(2,0),求圆C的方程 (3)若过B点向(2)中圆C引切线BS、BT,S、T分别是切点,求ST直线的方程.
如图所示,在直三棱柱中,,∠ACB=90°,M是的中点,N是的中点 (Ⅰ)求证:MN∥平面; (Ⅱ)求点到平面BMC的距离;
如图,为正方体,下面结论错误的是