(本小题满分12分)(注意:在试题卷上作答无效)在平面直角坐标系中,已知直线与圆心在第二象限的圆相切于原点,且圆与圆的面积相等.求圆的标准方程;试探究圆上是否存在异于原点的点,使点到定点的距离等于线段的长?若存在,求出点的坐标;若不存在,请说明理由.
已知等差数列满足:,,的前n项和为. (Ⅰ)求及; (Ⅱ)令bn=(nN*),求数列的前n项和.
已知,,记函数. (1)求函数的最大以及取最大值时的取值集合; (2)设的角所对的边分别为,若,,求面积的最大值.
(本小题满分15分) 在数列中,,为的前项和,且 (1)比较与大小; (2)令,数列的前项和为,求证:.
(本小题满分15分) 已知是椭圆的左、右顶点,,过椭圆的右焦点的直线交椭圆于点,交直线于点,且直线的斜率成等差数列,和是椭圆上的两动点,和的横坐标之和为2,(不垂直轴)的中垂线交轴与于点. (1)求椭圆的方程; (2)求的面积的最大值
(本小题满分15分) 已知二次函数满足条件: ①当时,,且; ②当时,; ③在R上的最小值为0 (1)求的解析式; (2)求最大的m(m>1),使得存在,只要,就有.