数列的首项为,前n项和为,且,设,cn=k+b1+b2+…+bn(k∈R+).(1)求数列{an}的通项公式;(2)当t=1时,若对任意n∈N*,|bn|≥|b3|恒成立,求a的取值范围;(3)当t≠1时,试求三个正数a,t,k的一组值,使得{cn}为等比数列,且a,t,k成等差数列.
设函数 (Ⅰ)若在点处的切线与轴和直线围成的三角形面积等于,求的值; (Ⅱ)当时,讨论的单调性.
已知数列是等差数列,是等比数列,且,,. (Ⅰ)求数列和的通项公式 (Ⅱ)数列满足,求数列的前项和.
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点. (Ⅰ)求证:EF⊥平面BCD; (Ⅱ)求二面角C-DE-A的大小.
某学校有甲、乙、丙三名学生报名参加2012年高校自主招生考试,三位同学通过自主招生考试考上大学的概率分别是,且每位同学能否通过考试时相互独立的。 (Ⅰ)求恰有一位同学通过高校自主招生考试的概率; (Ⅱ)若没有通过自主招生考试,还可以参加2012年6月的全国统一考试,且每位同学通过考试的概率均为,求这三位同学中恰好有一位同学考上大学的概率。
在中,角的对边分别为. (Ⅰ)若,求角的大小; (Ⅱ)若,求的值.