(本小题满分12分)已知:定义在R上的函数,对于任意实数a, b都满足,且,当.(Ⅰ)求的值;(Ⅱ)证明在上是增函数;(Ⅲ)求不等式的解集.
设函数. (Ⅰ)若时,求的单调区间; (Ⅱ)时,有极值,且对任意时,求的取值范围.
叙述并证明正弦定理.
已知函数()满足①;② (1)求的解析式; (2)若对任意实数,都有成立,求实数的取值范围.
已知函数 求最小正周期及单调递增区间; 当时,求的最大值和最小值.
已知函数 (1)求的值域; (2)设,函数.若对任意,总存在,使,求实数的取值范围.