(本小题满分12分)如图,在正四棱台中,=1,=2,=,分别是的中点.(1)求证:平面∥平面;(2)求证:平面平面;(3)(文科不做)求直线与平面所成的角.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为。 (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求和不全被选中的概率. 下面的临界值表供参考:
(参考公式:,其中)
右图为一简单组合体,其底面ABCD为正方形,平面,,且="2" . (1)求四棱锥B-CEPD的体积; (2)求证:平面.
已知复数,,且. (1)若且,求的值; (2)设=,求的最小正周期和单调减区间.
(本小题满分14分) 下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知
(1)求的值; (2)求用表示的代数式; (3)设表中对角线上的数,,,……,组成一列数列,设Tn=+++……+求使不等式成立的最小正整数n.
(本小题满分14分)已知函数() (1) 判断函数的单调性; (2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.