(本小题满分10分)(1) 设函数,其中θ∈,求导数的取值范围;(2)若曲线与曲线在它们的公共点处具有公共切线,求公共切线的方程.
已知数列中. (1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由; (2)若是数列的前项和,求满足的所有正整数.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
(本小题满分15分)某飞机失联,经卫星侦查,其最后出现在小岛附近.现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛到的距离为,船到小岛的距离为. (1)请分别求关于的函数关系式;并分别写出定义域; (2)当两艘船之间的距离是多少时搜救范围最大(即最大).
如图,在正方体中,分别是中点. 求证:(1)∥平面; (2)平面.
【原创】(本小题满分14分)设是单位圆上三点,为锐角. (1)若求 (2)若求三角形面积的最大值.