椭圆C:的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l. (1)求椭圆C的方程; (2)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围. (3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1、PF2的斜率分别为k1、k2,若k≠0,试证明 为定值,并求出这个定值.
设动点到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C。(1)求点P的轨迹方程;(2)若圆心在曲线C上的动圆M过点A(0,2),试证明圆M与x轴必相交,且截x轴所得的弦长为定值。
设函数,其中实数(1)求函数的单调区间;(2)若在区间上均为增函数,求a的取值范围。
如图,已知四边形ABCD是菱形,平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点。(1)求证:PB//平面AFC;(2)求多面体PABCF的体积。
乳制品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5。现从一批该乳制品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的20件乳制品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的乳制品记为,等级系数为5的乳制品记为,现从这5件乳制品中任取两件(假定每件乳制品被取出的可能性相同),写出所有可能的结果,并求这两件乳制品的等级系数恰好相同的概率
已知向量,设(1)求函数的表达式,并求的单调递减区间;(2)在中,a,b,c分别是角A,B,C的对边,若,求a的值。