设动点到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C。(1)求点P的轨迹方程;(2)若圆心在曲线C上的动圆M过点A(0,2),试证明圆M与x轴必相交,且截x轴所得的弦长为定值。
(本小题满分10分) 锐角三角形ABC的三内角A、B、C所对边的长分别为,设向量,且(Ⅰ)求角B的大小;(Ⅱ)若,求的取值范围.
(本小题满分12分) 已知A(-3,0),B(3,0),三角形PAB的内切圆的圆心M在直线上移动。(Ⅰ)求点P的轨迹C的方程;(Ⅱ)某同学经研究作出判断,曲线C在P点处的切线恒过点M,试问:其判断是否正确?若正确,请给出证明;否则说明理由。
(示范性高中做)已知数列的首项前项和为,且(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前n项和.
(普通高中做)已知等差数列中,为的前项和,.(Ⅰ)求的通项与; (Ⅱ)当为何值时,为最大?最大值为多少?
(本小题满分12分)已知直线l过点P(1,1),并与直线l1:x-y+3=0和l2:2x+y-6=0分别交于点A、B,若线段AB被点P平分,求:(Ⅰ)直线l的方程; (Ⅱ)以O为圆心且被l截得的弦长为的圆的方程.