某人群中各种血型的人所占的比例如下:
已知同种血型的人可以输血,O型血可以输给任何一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问: (1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?
(本小题满分13分) 甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望; (Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由. 参考公式:. 参考数据:
(本小题满分13分) 已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、. (Ⅰ)若、、依次成等差数列,且公差为2.求的值; (Ⅱ)若,,试用表示的周长,并求周长的最大值.
本题满分分 已知函数f (x)=x3+(1-a)x2-3ax+1,a>0. (Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1; (Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.
本题满分分 如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 :3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上. (Ⅰ) 求椭圆C的方程; (Ⅱ) 求的取值范围.
本题满分分 如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2. (Ⅰ) 求异面直线EF与BC所成角的大小; (Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.