某人群中各种血型的人所占的比例如下:
已知同种血型的人可以输血,O型血可以输给任何一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问: (1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?
已知:如图,点在上,,平分,交于点.求证:为等腰直角三角形.
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点.(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;(Ⅱ)如图(2),若,试证明:成等比数列.
如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将与接通.已知,,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设与所成的小于的角为.(Ⅰ)求矩形区域内的排管费用关于的函数关系式;(Ⅱ)求排管的最小费用及相应的角.
设数列的前项和为,对任意满足,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.