如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
将下列多项式分解因式: ①2x2﹣4xy+2y2 ②x3y﹣9xy3.
已知甲、乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 甲 9.4 10.3 10.8 9.7 9.8 乙 9.8 9.9 10.1 10 10.2 经计算,甲乙的平均数均为10,试根据这组数据估计种水稻品种的产量较稳定.
已知是某个二元一次方程的一组解,则这个方程可以是.
如图,在平面直角坐标系中,直线y=﹣x+交直线y=kx(k>0)于点B,平行于y轴的直线x=7交它们于点A、C,且AC=15. (1)求∠OBC的度数; (2)若正方形的四个顶点恰好在射线AB、射线CB及线段AC上,请直接写出射线AB上的正方形顶点的坐标.(不需要写出计算过程).
如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF. (1)求∠EAF的度数; (2)如图2,连接FC交BD于M,交AD于N. ①求证:AD=AF+2DM; ②若AF=10,AN=12,则MD的长为 .