(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆,直线(为参数).(1)写出椭圆的参数方程及直线的普通方程;(2)设,若椭圆上的点满足到点的距离与其到直线的距离相等,求点的坐标.
函数的最小值是,在一个周期内图象最高点与最低点横坐标差是,又:图象过点,求(1)函数解析式,(2)函数的最大值、以及达到最大值时的集合;(3)该函数图象可由的图象经过怎样的平移和伸缩得到?(4)当时,函数的值域.
设有关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2) 若是从区间[0,3] 任 取 的一个数,是从区间[0,2]任取的一个数,求上述方程有实根的概率.
设曲线在点处的切线斜率为,且,对一切实数,不等式恒成立.(1) 求的值;(2) 求函数的表达式;(3) 求证:.
设函数.(1)求函数的单调区间和极值。(2)若关于的方程有三个不同实根,求实数的取值范围;(3)已知当(1,+∞)时,恒成立,求实数的取值范围.
阅读下面材料:根据两角和与差的正弦公式,有 ----------① ------②由①+② 得 ------③令 有代入③得 .(1)利用上述结论,试求的值。(2)类比上述推证方法,根据两角和与差的余弦公式,证明:;