已知A⊆M={x|x2-px+15=0,x∈R},B⊆N={x|x2-ax-b=0,x∈R},又A∪B={2,3,5},A∩B={3},求p,a和b的值.
(本小题满分12分)已知函数f(x)=ax+ln(x-1),其中a为常数.(Ⅰ)试讨论f (x)的单调区间,(Ⅱ)若时,存在x使得不等式成立,求b的取值范围.
(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程,(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分12分)某商场每天(开始营业时)以每件150元的价格购人A商品若千件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完毕后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)(Ⅰ)若某天该商场共购人6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(Ⅱ)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC ⊥平面AA1 C1C, ∠A1AC=600, ∠BCA=900.(Ⅰ)求证:A1B⊥AC1(Ⅱ)已知点E是AB的中点,BC=AC,求直线EC1与平面平ABB1A1所成的角的正弦值。
(本小题满分12分)已知等差数列{}的各项均为正数, =1,且成等比数列.(Ⅰ)求的通项公式,(Ⅱ)设,求数列{}的前n项和Tn.