(本题8分)解方程:x2-3x+2=0.
【特例感知】
(1)如图1, △ A O B 和 △ C O D 是等腰直角三角形, ∠ A O B = ∠ C O D = 90 ° ,点 C 在 O A 上,点 D 在 B O 的延长线上,连接 A D , B C ,线段 A D 与 B C 的数量关系是______;
【类比迁移】
(2)如图2,将图1中的 △ C O D 绕着点 O 顺时针旋转 α ( 0 ° < α < 90 ° ) ,那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.
【方法运用】
(3)如图3,若 A B = 8 ,点 C 是线段 A B 外一动点, A C = 3 3 ,连接 B C .
①若将 C B 绕点 C 逆时针旋转 90 ° 得到 C D ,连接 A D ,则 A D 的最大值是______;
②若以 B C 为斜边作 R t △ B C D ( B , C , D 三点按顺时针排列), ∠ C D B = 90 ° ,连接 A D ,当 ∠ C B D = ∠ D A B = 30 ° 时,直接写出 A D 的值.
如图,在平面直角坐标系中,一次函数 y = k x + b 的图象与 x 轴交于点 A ,与 y 轴交于点 B ( 0 , 9 ) ,与直线 O C 交于点.
(1)求直线 A B 的函数表达式;
(2)过点 C 作 C D ⊥ x 轴于点 D ,将 △ A C D 沿射线 C B 平移得到的三角形记为 △ A ′ C ′ D ′ ,点 A , C , D 的对应点分别为 A ′ , C ′ , D ′ ,若 △ A ′ C ′ D ′ 与 △ B O C 重叠部分的面积为 S ,平移的距离 C C ′ = m ,当点 A ′ 与点 B 重合时停止运动.
①若直线 C ′ D ′ 交直线 O C 于点 E ,则线段 C ′ E 的长为______(用含有 m 的代数式表示);
②当 0 < m < 10 3 时, S 与 m 的关系式为______;
③当 S = 24 5 时, m 的值为______.
如图,四边形 A B C D 内接于 A B C D , A D 是 ⊙ O 的直径, A D , B C 的延长线交于点 E ,延长 C B 交 P A 于点 P , ∠ B A P + ∠ D C E = 90 ° .
(1)求证: P A 是 ⊙ O 的切线;
(2)连接 A C , sin ∠ B A C = 1 3 , B C = 2 , A D 的长为______.
如图,用一根 60 厘米的铁丝制作一个“日”字型框架 A B C D ,铁丝恰好全部用完.
(1)若所围成的矩形框架 A B C D 的面积为 144 平方厘米,则 A B 的长为多少厘米?
(2)矩形框架 A B C D 面积的最大值为______平方厘米.
某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.
根据以上信息,解答下列问题:
(1)此次被调查的学生人数为______名;
(2)补全条形统计图;
(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;
(4)根据抽样调查结果,请你估计该校 800 名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.