某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了: A .党史宣讲; B .歌曲演唱; C .校刊编撰; D .诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别
A
B
C
D
人数(人 )
10
a
15
5
根据统计图表中的信息,解答下列问题:
(1)求 a 和 m 的值;
(2)求扇形统计图中 D 所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
平均用时(小时)
2.5
3
2
求这一周四个小组所有成员平均每人参与活动的时间.
如图,已知经过原点的抛物线 y = 2 x 2 + mx 与 x 轴交于另一点 A ( 2 , 0 ) .
(1)求 m 的值和抛物线顶点 M 的坐标;
(2)求直线 AM 的解析式.
解分式方程: 2 x - 1 x + 3 = 1 .
计算: x ( x + 2 ) + ( 1 + x ) ( 1 - x ) .
如图,锐角三角形 ABC 内接于 ⊙ O , ∠ BAC 的平分线 AG 交 ⊙ O 于点 G ,交 BC 边于点 F ,连接 BG .
(1)求证: ΔABG ∽ ΔAFC .
(2)已知 AB = a , AC = AF = b ,求线段 FG 的长(用含 a , b 的代数式表示).
(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ∠ ABD = ∠ CBE ,求证: B G 2 = GE ⋅ GD .