如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,点动点P若在某个部分时,连结PA、PB、构成∠PAC,∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式;
已知点A 在抛物线的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求度数.
在平面直角坐标系中,的三个顶点坐标分别为A(2,-4),B(3,-2), C(6,-3).(1)画出△ABC关于轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 ,使△A2B2C2与△A1B1C1的相似比为2︰1.
如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C3B2.
(.重庆市A卷,第18题,4分)如图,在矩形ABCD中,AB=,AD=10,连接BD,DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△.当射线和射线都与线段AD相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为 .
解分式方程: