在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点. (1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k= ; (2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF; (3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
(6分) 解方程:.
计算(每小题6分,共12分) (1);(2).
如图8,在△ABC中,∠A=50°,∠C=65°,AB=12,BC=10,DE垂直平分AB交AC、AB于E、D两点. 求:(1)∠EBC的度数;(2)△BCE的周长.
在一个不透明的盒子里装有除颜色外完全相同的黑、白两种球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)将数据表补充完整; (2)请你估计: 随着实验次数的增加,摸到白球的频率特点是,这个频率将会接近(精确到0.1); (3)假如你摸一次,你摸到白球的机会是; (4)试估算盒子里黑、白两种颜色的球各有多少个?
如图7,在△ABC中,∠BAC=75°,AD、BE分别是BC、AC边上的高,AD=BD,求∠C和∠AFB的度数.