在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点. (1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k= ; (2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF; (3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为 cm,椅子的高度为 cm,则应是的一次函数,下表列出两套符合条件的课桌椅的高度:
(1)请确定与的函数关系式.(2)现有一把高39 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么?
已知与成正比例,且当时,.(1)求与的函数关系式;(2)求当时的函数值.
若一次函数的图象与轴交点的纵坐标为-2,且与两坐标轴围成的直角三角形面积为1,试确定此一次函数的表达式.
已知一次函数,(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点(0,).
已知一次函数的图象经过点(,),且与正比例函数的图象相交于点(4,),求:(1)的值;(2)、的值;(3)求出这两个函数的图象与轴相交得到的三角形的面积.