某中学拟组织学生开展唱红歌比赛活动.团委对初四一班会唱红歌的学生人数进行了统计(A:会唱1首;B会唱2首;C:会唱3首;D:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整.(2)求该班会唱1首的学生人数占全班人数的百分比.(3)在扇形统计图中,计算会唱3首的部分所对应的圆心角的度数.(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?
甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据信息,问哪位同学获胜?(转身拐弯处路程可忽略不计)
已知在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2. (1)求证:FG∥BC (2)请你在图中找出一对相似三角形,并说明相似的理由.
请先化简,再选择一个你喜欢又能使原式有意义的数代入求值.
解不等式组,并把解集表示
如图,大江的一侧有甲、乙两家工厂,它们都有垂直于江边的小路AD、BE,长度分别为3千米和2千米,两条小路相距10千米.现在要在江边建一个抽水站,把水送到甲、乙两厂去.欲使供水管路最短,抽水站应建在哪里?