某超市为方便顾客购物,从底楼到二楼安装自动扶梯(如图①),如图②是其侧面示意图,PQ是底层,BE是二楼,MN是二楼楼顶,自动扶梯底端和顶端分别安装在A处、B处.己知MN∥BE∥PQ,DB⊥PQ于点D,DB交MN于点C,在A处测得C点的仰角∠CAD为42°,二楼的层高BC为5.8米,AD为12米,求自动扶梯AB的长度.(温馨提示:sin42°≈0.74,cos42°≈0.67,tan42°≈0.9)
已知关于x的一元二次方程。 (1)求证:方程有两个不相等的实数根; (2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
2015年3月30日是全国中小学生安全教育日,学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题: 频率分布表
(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=; (2)补全频数分布直方图; (3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
在□ABCD中,点E、F分别在AB、CD上,且AE=CF. (1)求证:△ADE≌△CBF; (2)若DF=BF,求证:四边形DEBF为菱形.
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3) (1)求此抛物线的解析式; (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y. (1)求y与x的函数关系式; (2)当四边形AEFD为菱形时,求x的值; (3)当△DEF是直角三角形时,求x的值.