甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若乙服装每件的进价为242元,商场把乙服装按8折出售.问标价至少为多少时,销售乙服装才不亏本?(结果取整数)
先化简:.若结果等于,求出相应a的值.
如图,中,,,过点作∥,点、分别是射线、线段上的动点,且,过点作∥交线段于点,联接,设面积为,.(1)用的代数式表示;(2)求与的函数关系式,并写出定义域; (3)联接,若与相似,求的长.
解下列一元二次方程:(1); (2).
如图所示,△ABC中,∠A=96°。(1)BA1平分∠ABC,CA1平分∠ACD,请你求∠A1的度数;(2)BA2平分∠A1BC,CA2平分∠A1CD,请你求∠A2的度数;(3)依次类推,写出∠与∠的关系式。(4)小明同学用下面的方法画出了α角:作两条互相垂直的直线MN、PQ,垂足为O,作∠PON的角平分线OE,点A、B分别是OE、PQ上任意一点,再作∠ABP的平分线BD,BD的反向延长线交∠OAB的平分线于点C,那么∠C就是所求的α角,则α的度数为 .
(1)已知方程x2+px+q=0(p2-4q≥0)的两根为x1、x2,求证:x1+x2=-p,x1·x2=q.(2)已知抛物线y=x2+px+q与x轴交于点A、B,且过点(―1,―1),设线段AB的长为d,当p为何值时,d2取得最小值并求出该最小值.