如图:已知P是半径为5cm的⊙O内一点.解答下列问题: (1)用尺规作图找出圆心O的位置.(要求:保留所有的作图痕迹,不写作法) (2)用三角板分别画出过点P的最长弦AB和最短弦CD. (3)已知OP=3cm,过点P的弦中,长度为整数的弦共有_________ 条.
如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年 ( 1535 年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:
方案设计:如图2,宝塔 CD 垂直于地面,在地面上选取 A , B 两处分别测得 ∠ CAD 和 ∠ CBD 的度数 ( A , D , B 在同一条直线上).
数据收集:通过实地测量:地面上 A , B 两点的距离为 58 m , ∠ CAD = 42 ° , ∠ CBD = 58 ° .
问题解决:求宝塔 CD 的高度(结果保留一位小数).
参考数据: sin 42 ° ≈ 0 . 67 , cos 42 ° ≈ 0 . 74 , tan 42 ° ≈ 0 . 90 , sin 58 ° ≈ 0 . 85 , cos 58 ° ≈ 0 . 53 , tan 58 ° ≈ 1 . 60 .
根据上述方案及数据,请你完成求解过程.
在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知 AB ̂ , C 是弦 AB 上一点,请你根据以下步骤完成这个引理的作图过程.
(1)尺规作图(保留作图痕迹,不写作法);
①作线段 AC 的垂直平分线 DE ,分别交 AB ̂ 于点 D , AC 于点 E ,连接 AD , CD ;
②以点 D 为圆心, DA 长为半径作弧,交 AB ̂ 于点 F ( F , A 两点不重合),连接 DF , BD , BF .
(2)直接写出引理的结论:线段 BC , BF 的数量关系.
先化简,再求值: ( 2 - 2 x x - 2 ) ÷ x 2 - 4 x 2 - 4 x + 4 ,其中 x = 4 .
计算: ( 2021 - π ) 0 + ( 1 2 ) - 1 - 2 cos 45 ° .
已知抛物线 y = a x 2 + bx + c 与 x 轴只有一个公共点.
(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;
(2)已知点 P 1 ( - 2 , 1 ) , P 2 ( 2 , - 1 ) , P 3 ( 2 , 1 ) 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 l : y = kx + 1 与抛物线交于 M , N 两点,点 A 在直线 y = - 1 上,且 ∠ MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B , C .求证: ΔMAB 与 ΔMBC 的面积相等.