(本小题满分12分)设数列满足,且对任意,函数满足.(1)求数列的通项公式;(2)设,记数列的前项和为,求证:.
(本小题满分12分)已知函数,,点是函数图象上任意一点,直线为函数的图象在 处的切线.(I)求直线的方程;(II)若直线与的图象相切,求和的取值范围.
(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)设向量(),若点在椭圆上,求的取值范围.
(本小题满分12分)已知两地的距离是120km.假设汽油的价格是6元/升,以km/h(其中)速度行驶时,汽车的耗油率为L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
(本小题满分10分)已知函数的图象过原点,且在、处取得极值.(Ⅰ)求函数的单调区间及极值;(Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
(本小题满分10分)已知,, 且(1) 求函数的解析式;(2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.