已知抛物线:顶点在坐标原点,轴为对称轴,且过点,(1)求抛物线的方程;(2)已知抛物线的准线为,焦点为,若点为直线:上的动点,设点横坐标为.试讨论,确定圆心在抛物线上,与相切,且过点的圆的个数?
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
(本小题满分12分)如图,四棱锥的底面ABCD是平行四边形,底面ABCD,,.(1)求证:;(2)点E在棱PC上,满足,求二面角的余弦值.
(本小题满分12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求b;(2)若的面积为,求c.
(本小题满分12分)已知:过抛物线的焦点的直线交抛物线于两个不同的点,过分别作抛物线的切线,且二者相交于点(1)求证:;(2)求的面积的最小值。
(本小题满分12分)已知函数,其中。(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围。