已知a是实常数,函数.(1)若曲线在处的切线过点A(0,﹣2),求实数a的值;(2)若有两个极值点(),①求证:;②求证:.
已知数列满足:且.(1)求数列的通项公式;(2)令,数列的前项和为,求证:时,且
如图:两点分别在射线上移动,且,为坐标原点,动点满足(1)求点的轨迹的方程;(2)设,过作(1)中曲线的两条切线,切点分别为,①求证:直线过定点;②若,求的值。
已知函数.(1)当时,求的单调区间;(2)当时,若存在, 使得成立,求实数的取值范围.
如图,在直三棱柱中,,。M、N分别是AC和BB1的中点。(1)求二面角的大小。(2)证明:在AB上存在一个点Q,使得平面⊥平面, 并求出的长度。
为喜迎马年新春佳节,某商场在正月初六进行抽奖促销活动,当日在该店消费满500元的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有 “马”“上”“有”“钱”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“钱”字球,则停止取球.获奖规则如下:依次取到标有“马”“上”“有”“钱”字的球为一等奖;不分顺序取到标有“马”“上”“有”“钱”字的球,为二等奖;取到的4个球中有标有“马”“上”“有”三个字的球为三等奖.(1)求分别获得一、二、三等奖的概率;(2)设摸球次数为,求的分布列和数学期望.