如图:两点分别在射线上移动,且,为坐标原点,动点满足(1)求点的轨迹的方程;(2)设,过作(1)中曲线的两条切线,切点分别为,①求证:直线过定点;②若,求的值。
a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.
已知x,y∈R.求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.
求关于x的方程x2-mx+3m-2=0的两根均大于1的充要条件.
证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
写出下列命题的否命题,并判断原命题及否命题的真假: (1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等; (2)矩形的对角线互相平分且相等; (3)相似三角形一定是全等三角形.