有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.(1)求n的值;(2)求随机变量ξ的概率分布列和数学期望.
已知圆C与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长2 .求 圆C的方程.
已知函数(常数.(Ⅰ) 当时,求曲线在点处的切线方程;(Ⅱ)讨论函数在区间上零点的个数(为自然对数的底数).
数列首项,前项和与之间满足(1)求证:数列是等差数列 (2)求数列的通项公式(3)设存在正数,使对于一切都成立,求的最大值。
已知圆方程为:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量(为原点),求动点的轨迹方程,并说明此轨迹是什么曲线.
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求三棱锥的体积.