(本小题满分13分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列和数学期望E(X).(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且. (1)求椭圆的离心率; (2)若过、、三点的圆恰好与直线:相切, 求椭圆的方程;
如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。 (I)求三棱锥D1—ACE的体积; (II)求异面直线D1E与AC所成角的余弦值; (III)求二面角A—D1E—C的正弦值。
在数列中,,,. (1)证明数列是等比数列; (2)设数列的前项和,求的最大值。
已知函数 (1)求函数的最小正周期和图像的对称轴方程; (2)若时,的最小值为,求的值。
(本小题满分14分) 已知函数 (Ⅰ)求函数的极值点; (Ⅱ)若直线过点且与曲线相切,求直线的方程; (Ⅲ)设函数求函数在上的最小值.( )