如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
(本小题满分12分)如图,多面体ABCDEF中,底面ABCD是菱形,,四边形BDEF是正方形,且平面ABCD. (Ⅰ)求证:平面AED; (Ⅱ)若,求多面体ABCDEF的体积V.
(本小题满分12分)已知函数. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)求函数的极值.
(本小题满分12分)已知是斜三角形,内角A、B、C所对的边的长分别为a、b、c,若. (Ⅰ)求角C; (Ⅱ)若,且,求的面积.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)解不等式; (Ⅱ)若存在实数x,使得,求实数a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知在平面直角坐标系中,直线的参数方程是(t是参数),以原点O为极点,x轴正半轴建立极坐标系,曲线C的极坐标方程. (Ⅰ)判断直线与曲线C的位置关系; (Ⅱ)设M为曲线C上任意一点,求的取值范围.