(本小题满分12分)已知函数. (Ⅰ)求的单调区间; (Ⅱ)若都属于区间且, ,求实数的取值范围.
某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图).(Ⅰ)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;(Ⅱ)设是月用水量为[0,2)的家庭代表.是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表至少有一人被选中的概率.
在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.
在中,边、、分别是角、、的对边,且满足.(Ⅰ)求;(Ⅱ)若,,求边,的值.
已知圆圆动圆与圆外切并与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.
设等差数列的前项和为,且,.(1)求数列的通项公式;(2)设数列满足 ,求的通项公式;(3)求数列前 项和.