(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
(本题14分)设函数.(1)求函数的单调递增区间;(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(本题12分)已知函有极值,且曲线处的切线斜率为3.(1)求函数的解析式;(2)求在[-4,1]上的最大值和最小值。(3)函数有三个零点,求实数的取值范围.
(本题12分)在中,角所对的边为已知.(1)求的值;(2)若的面积为,且,求的值.
(本题12分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品的销售利润与上市时间的关系.(1)写出市场的日销售量与第一批产品A上市时间t的关系式;(2)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
(本题12分)设命题P:函数在区间[-1,1]上单调递减;命题q:函数的值域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.