(本小题满分12分)已知椭圆C:的离心率为,长轴长为8.。(Ⅰ)求椭圆C的标准方程;(Ⅱ)若不垂直于坐标轴的直线经过点P(m,0),与椭圆C交于A,B两点,设点Q的坐标为(n,0),直线AQ,BQ的斜率之和为0,求的值。
已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值。⑴求a,b的值;⑵若x[-3,2]都有f(x)>恒成立,求c的取值范围。
已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行. ⑴求f(x)的解析式; ⑵求函数g(x)=f(x2)的单调递增区间.
已知数列{an}是公比为q的等比数列,Sn是其前n项和,且S3,S9,S6成等差数列(1)求证:a2 , a8, a5也成等差数列(2)判断以a2, a8, a5为前三项的等差数列的第四项是否也是数列{an}中的一项,若是求出这一项,若不是请说明理由
若数列前n项和可表示为,则是否可能成为等比数列?若可能,求出a值;若不可能,说明理由
已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,(1)求f(x)的解析式;(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。