一列火车通过一座1000米的大桥需65秒,如果用同样的速度通过一座730米得隧道则要50秒。求这列火车前进的速度和火车的长度。
解方程:
如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为( ),点E的坐标为( ).(2)若抛物线经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.②运动停止时,求抛物线的顶点坐标.
如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连结CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.(2)若AF=1,OA=,求PC的长.
问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少? 分析问题若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.解决问题借鉴我们已有的研究函数的经验,探索函数的最大(小)值.(1)实践操作:填写下表,并用描点法画出函数的图象:
(2)观察猜想:观察该函数的图象,猜想当x= 时,函数有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,〕
数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)