(本小题满分15分) 如图(1)所示,直角梯形中,,,,.过作于,是线段上的一个动点.将沿向上折起,使平面平面.连结,,(如图(2)). (Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出 的长;不存在,说明理由; (Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.
(本小题12分)(1)已知,且,求的值; (2)已知为第二象限角,且,求的值.
(本小题12分)已知集合. (1)能否相等?若能,求出实数的值;若不能,试说明理由; (2)若命题,命题,且是充分不必要条件,求实数的取值范围.
已知函数的图象在处的切线方程为,其中有e为自然对数的底数。 (1)求的值; (2)当时,证明; (3)对于定义域为D的函数若存在区间时,使得时,的值域是。则称是该函数的“保值区间”。设+,问函数是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由。
已知,其中. (1)若对定义域内的任意x,都有,求b的值; (2)若函数在其定义域内是单调函数,求b的取值范围; (3)若,证明:对任意的正整数n,不等式都成立。
在锐角△ABC中,分别是角A,B,C的对边,,且∥。 (1)求角A的大小; (2)求函数的值域。