(本小题满分10分)已知曲线: (为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;(Ⅱ)设为曲线上的点,点的极坐标为,求中点到曲线上的点的距离的最小值.
已知向量=(,),=(,),设,(1)求的最小正周期及单调递增区间;(2)若,求的值域;(3)若的图象按=(t,0)作长度最短的平移后,其图象关于原点对称,求的坐标.
设函数,且关于x的不等式的解集为,(1)求b的值;(2)解关于x的不等式().
已知,,且,,(1)求,;(2)求()与的夹角.
(本题满分15分) 已知直线l1:x=my与抛物线C:y2=4x交于O (坐标原点),A两点,直线l2:x=my+m 与抛物线C交于B,D两点. (Ⅰ) 若 | BD | = 2 | OA |,求实数m的值;(Ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记S1,S2分别为三角形OAA1和四边形BB1D1D的面积,求的取值范围.
(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.