已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.(I)求椭圆的方程;(II)直线与椭圆交于两点,点位于第一象限,是椭圆上位于直线两侧的动点.(i)若直线的斜率为,求四边形面积的最大值;(ii)当点运动时,满足,问直线的斜率是否为定值,请说明理由.
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形 (Ⅰ)求出的值; (Ⅱ)利用合情推理的“归纳推理思想”,归纳出与之间的关系式,并根据你得到的关系式求出的表达式; (Ⅲ)求的值.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (I)求椭圆的方程; (II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
设函数. (Ⅰ)试问函数能否在时取得极值?说明理由; (Ⅱ)若当时,函数与的图像有两个公共点,求c 的取值范围.
若实数满足. 试确定的大小关系.
从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,,求椭圆的方程