(本小题满分13分) 已知,,,(Ⅰ)若,,求的值;(Ⅱ)求函数的最小正周期及单调递增区间.
4个男同学,3个女同学站成一排. (1)男生甲必须排在正中间,有多少种不同的排法? (2)3个女同学必须排在一起,有多少种不同的排法? (3)任何两个女同学彼此不相邻,有多少种不同的排法? (4)其中甲、乙两名同学之间必须有3人,有多少种不同的排法? (用数字作答)
设实部为正数的复数,满足,且复数在复平面上对应的点在第一、三象限的角平分线上. (1)求复数; (2)若为纯虚数, 求实数的值.
已知二次函数,及函数。 关于的不等式的解集为,其中为正常数。 (1)求的值; (2)R如何取值时,函数存在极值点,并求出极值点; (3)若,且,求证:。
已知函数, (1)若x=1时取得极值,求实数的值; (2)当时,求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围。
已知函数,其中,. (1)当时,求曲线在点处的切线方程; (2)求的单调区间.(要写推理过程)