如图所示,已知直线AB、CD相交于点O,OE、OF为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.
解方程:x2+2x―4=0.
解方程:(1)x2+x―12=0;
如图,BD平分∠ABC,且AB=4,BC=6,则当BD= 时,△ABD∽△DBC.
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(―2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是 .
如图,已 知直线 交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.