如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线的解析式;(2)当直线通过点M时,求直线l的解析式;(3)若点M,N位于l的异侧,确定t的取值范围.
已知关于x的一次函数y=mx+2的图像经过点(-2,6).(1)求m的值;(2)画出此函数的图像;
解不等式2(1-2x)+5≤3(2-x)
某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克;生产一件B产品需用甲种原料4千克,乙种原料10千克.(1)请你根据要求,设计出A、B两种产品的生产方案;(2)如果生产一件A产品可获利700元,生产一件B产品可获利1200元,那么上述哪种生产方案获得的总利润最大?
阅读下面问题:;;.试求:(1)(n为正整数)的值.(2)利用上面所揭示的规律计算:.
某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本,求打折前每本笔记本的售价是多少元?