(本题10分)已知函数的图象经过点和,记(1)求数列的通项公式;(2)设,若,求的最小值;(3)求使不等式对一切均成立的最大实数.
某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
的三个内角对应的三条边长分别是,且满足(1)求的值;(2)若, ,求和的值.
已知函数在(1,+∞)上是增函数,且a>0.(1)求a的取值范围;(2)求函数在[0,+∞)上的最大值;(3)设a>1,b>0,求证:.
已知函数满足f(1)=0,且在x=2时函数取得极值.(1)求a,b的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.
已知数列{an}满足a1=1,an+1=2an+1(n∈N+)(1)求a2,a3,a4,a5;(2)归纳猜想出通项公式an,并且用数学归纳法证明;(3)求证a100能被15整除.