已知椭圆为其左、右焦点,A为右顶点,l为左准线,过的直线与椭圆相交于P,Q两点,且有(1)求椭圆C的离心率e的最小值;(2),求证:M,N两点的纵坐标之积是定值。
设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有两解,求实数的取值范围.
设,先分别求,,,然后归纳猜想一般性结论,并给出证明.
已知函数. (1)若在处取得极值为,求的值; (2)若在上是增函数,求实数的取值范围.
设复数,试求实数取何值时 (1)Z是实数;(2)Z是纯虚数;(3)Z对应的点位于复平面的第一象限.
已知复数,, (Ⅰ)求; (Ⅱ)若复数满足,求.