已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列.(Ⅰ)求椭圆C的方程.(Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
(本小题满分8分) 将圆心角为1200,面积为3的扇形,作为圆锥的侧面,求圆锥的表面积和体积.
设,函数. (Ⅰ)证明:存在唯一实数,使; (Ⅱ)定义数列:,,. (i)求证:对任意正整数n都有; (ii) 当时,若, 证明:当k时,对任意都有:
已知函数(,实数,为常数). (Ⅰ)若,求函数的极值; (Ⅱ)若,讨论函数的单调性.
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向. (Ⅰ)求双曲线的离心率; (Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
如图,在四棱锥中,底面是矩形.已知. (Ⅰ)证明平面; (Ⅱ)求异面直线与所成的角的大小; (Ⅲ)求二面角的大小.