已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列.(Ⅰ)求椭圆C的方程.(Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
(本小题6分)如图,已知—正三棱锥P- ABC的底面棱长AB=3,高PO= ,求这个正三棱锥的表面积.
(本小题满分14分)已知函数.(1)求的定义域;(2)在函数的图像上是否存在不同的两点,使过此两点的直线平行于轴;(3)当满足什么关系时,在上恒取正值.
(本小题满分12分)某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?(已知,)
(本小题满分12分)如图,棱长为1的正方体中, (1)求证:;(2) 求三棱锥 的体积.
(本小题满分12分)已知函数.(1)判断的奇偶性,并证明你的结论; (2)证明:函数在内是增函数.