选修41:几何证明选讲 如图,过圆O外一点M作圆的切线,切点为A,过A作AP⊥OM于P. (1)求证:OM·OP=OA2; (2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.求证:∠OKM=90°.
已知函数. (1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率; (2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
(本小题满分12分)已知圆:.问在圆上是否存在两点关于直线对称,且以为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
(本小题满分12分)如图,四棱锥中,底面为平行四边形,,底面. (1)证明:; (2)若求二面角的余弦值.
(本小题满分12分)如图,已知圆心坐标为的圆与轴及直线分别相切于两点,另一圆与圆外切,且与轴及直线分别相切于两点. (1)求圆和圆的方程;(2)过点作直线的平行线,求直线被圆截得的弦的长度.
(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积(底面面积不计); (3)哪个方案更经济些?