在平面直角坐标系上,第二象限角的终边与单位圆交于点.(1)求的值;(2)若向量与夹角为,且,求直线的斜率.
如图,某学校要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用一种颜色的鲜花,相邻区域使用不同颜色的鲜花,现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择。 (I)求恰有两个区域用红色鲜花的概率; (II)记ξ为花圃中用红色鲜花布置区域个数,求随机变量ξ的分布列及其数学期望Eξ.
如图,在△ABC中;角A、B、C所对的边分别是a、b、c,且,O为△ABC的外心。(I)求△ABC的面积; (II)求
已知数列满足: ①求数列的通项公式; ②证明; ③设,且,证明
已知不垂直于x轴的动直线l交抛物线于A、B两点,若A,B两点满足AQP=BQP,其中Q(-4,0),原点O为PQ的中点. ①求证A,P,B三点共线; ②当m=2时,是否存在垂直于-轴的直线,使得被以为直径的圆所截得的弦长为定值,如果存在,求出的方程,如果不存在,请说明理由
已知函数. ①若曲线在x=0处与直线x+y= 6相切,求a,b的值; ②设时,在x=0处取得最大值,求实数a的取值范围.