某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定?(3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
设函数. (1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围; (2)当a=1时,求函数在区间[t,t+3]上的最大值.
设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2). (1)求双曲线C的方程; (2)求直线AB方程; (3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知数列的前项和为,且满足. (1)求,的值; (2)求; (3)设,数列的前项和为,求证:.
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,. (1)求证平面; (2)求平面与平面所成锐二面角的余弦值; (3)求直线与平面所成角的余弦值.
已知数列的前项和满足:,且 (1)求 (2)猜想的通项公式,并用数学归纳法证明