某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定?(3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
(本小题满分16分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(1)求证:;(2)求证:∥平面;(3)求二面角的余弦值.
(本小题满分16分)已知椭圆.(1)求椭圆的离心率;(2)设为原点,若点在直线上,点在椭圆上,且,求线段长度的最小值.
(本小题满分14分)已知命题:方程有两个不相等的实根;命题:关于的不等式对任意的实数恒成立.若“”为真,“”为假,求实数的取值范围.
(本小题满分14分)在直角坐标系中,已知,,动点,若直线的斜率,满足条件.(1)求动点的轨迹方程;(2)已知,问:曲线上是否存在点满足?若存在求出点坐标;若不存在,请说明理由.
(本小题满分14分)已知命题:实数满足,命题:实数满足方程表示焦点在轴上的椭圆,若是的充分不必要条件,求的取值范围.