平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图2,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(3)如图3,写出∠A+∠B+∠C+∠D+∠E+∠F的度数=__________.
(本题满分16分,每小题8分)(1) 计算: (2) 先计算,再把计算所得的多项式分解因式:
(12分)如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.,B(-3,O),C(,O).(1)求⊙M的半径; .(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.
(10分)如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=AB,(1)求证:AD=BE;(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG,求证:BE=2FG;(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)
(10分)端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或列表方法求选购方案);(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?
(8分)如上右图,在Rt△ABC中,∠ B=90°,E为AB上一点,∠ C=∠BEO,O是BC上一点,以D为圆心,OB长为半径作⊙O,,AC是⊙O,的切线.(1)求证:OE=OC;(2)若BE=4,BC=8,求OE的长.