解不等式组 ,并写出它的所有整数解.
定义:两组邻边分别相等的四边形叫做筝形. (1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想. (2)筝型ABCD中,对角线AC,BD相交于点O. ①如图1,若BD=CO,求tan∠BCD的值. ②如图2,若∠DAC=∠BCD=72º,求AD:CD的值. (3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.
如图,已知抛物线y=与x轴交于A、B两点.(1)点A的坐标是 ,点B的坐标是 ,抛物线的对称轴是直线 ;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C 在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b0)与 x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.
某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件.(1)若生产第3级产品,则每天产量为 件,每件利润为 元;(2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式;(3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,AC=,求AB的长.
如图,已知在平面直角坐标系xoy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.