解关于的不等式
在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b. (1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;(2)求证:AC⊥AB;(3)求四面体的体积.
已知函数和点,过点作曲线的两条切线、,切点分别为、.(1)求证:为关于的方程的两根;(2)设,求函数的表达式;(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等,则m的最大值,为正整数
已知圆A:与轴负半轴交于B点,过B的弦BE与轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求的值;⑵求的值.
已知函数,数列满足:.(Ⅰ)求证:;(Ⅱ)求数列的通项公式;(Ⅲ)求证不等式: